2000mm Ultrasonic Fuel Level Sensor UFL2000 Specification

Ultrasonic Level

I. Overview

UFL2000 fuel level meter is a sensing device that uses ultrasonic detection technology to measure the non-contact liquid level of fuel and liquid substances. Compared with traditional testing equipment, UFL2000 fuel level meter has high measurement accuracy and is easy to use. It can be externally installed (without destroying the container structure), and can be connected to networked devices for network monitoring and management. The ultrasonic fuel quantity monitoring sensor is optimized for vehicle monitoring mode. It can adapt to vehicles running or stationary at various speeds on various roads, and can output more stable data for other liquids loaded on the vehicle. UFL2000 fuel level meter is referred to as sensor.

II. Product Features

Non-contact measurement, no need to change the shape of the container, no need to polish the surface paint layer of the container;

Metal casing, internal circuit potting treatment, rainproof design, suitable for outdoor environment; built-in powerful magnet, external waterproof adhesive, easy to install, fixed and firm;

Wide voltage operation, DC 12~48V power supply, suitable for all kinds of vehicles;

RS232 output interface, compatible with various sensor signal connections;

High-frequency ultrasonic testing, high solid penetration, suitable for containers of various materials such as metal and plastic

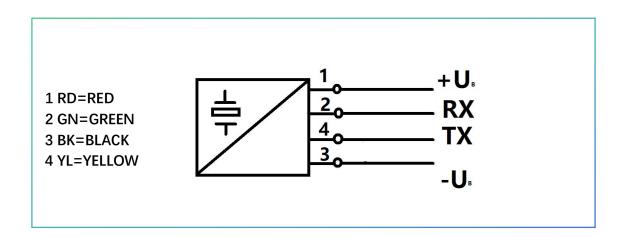
High stability measurement output, built-in anti-interference data processing model, intelligent filtering, compensation for environmental interference

High-precision measurement output, built-in high-precision calculation model, millimeter-scale measurement resolution

III. Application

Vehicle fuel quantity monitoring Liquid level measurement

MIC METERING (SHENZHEN) LIMITED


Container water level monitoring

IV: Parameters

Technical data	
General Specifications	
Sensing distance	202000mm
Adjustment range	202000mm
Unusable area	020mm
Standard target plate	100mm×100mm
Transducer frequency About	2 MHz
Response delay About	85 ms
Indicators/Operating means	
LED yellow	solid: NO LED flash:
LED red	flashing:
Electrical specifications	
Operating voltage $U_{\rm B}$	512 VDC ripple10%ss
No-load supply current	≤20mA
Output	
Output type	1 digital output RS485 or UART/TTL
Resolution	
Deviation of the characteristic curve	±1% of full-scale value
Repeat accuracy	$\pm 0.1\%$ of full-scale value
Load impedance	>1k Ohm

Maximum switching current	mA
Temperature influence	±1.5% of full-scale value
Ambient conditions	
Ambient temperature	-2570°C
Storage temperature	-4085°C
Mechanical specifications	
Protection grade	IP68
Connection	PVC cable,4-CABLE
Material	
Housing	PBT OR FRP
Transducer	Epoxy resin/hollow; Polyurethane foam
Weight	30g
Compliance with standards and Directives	
Standard conformity	CE/ CCC

V. Wire connection

VI: MODBUS Communication

MODBUS RTU communication protocol

1. The hardware uses RS-485/422/UART TTL, master-slave half/full duplex communication, with

the master calling the slave address and the slave responding to communication.

2. Data frame 10 bits, 1 start bit, 8 data bits, 1 stop bit, no checksum.

Baud rate 9600 19200 115200 (default is 9600)

3. Function code 03H: Read register value

Host sends:

1	2	3	4	5	6	7	8
ADR	03Н	Starting register high byte	Starting register low byte	High number of registers in bytes	Low number of registers in bytes	CRC code low byte	CRC code high byte

1st byte ADR: Slave address code (x01~0xFE default 0x01) Second byte 03H: Read register value function code 3rd and 4th bytes: starting address of the register to be read 5th and 6th bytes: number of registers to be read 7th and 8th bytes: CRC16 checksum from bytes 1 to 6

When the slave receives correctly, it sends back:

1	2	3	4、5	6、7		M-1、 M	M+1	M+2
							CRC	CRC
ADR	03H	total	Register	Register		Register data	code	code
ADN	0311	bytes	Data 1	Data 2	0 0 0	М	low	high
							byte	byte

1st byte ADR: Slave address code

Second byte 03H: Return the read function code

The total number of bytes from 4 to M (including 4 and M) in the third byte

4th to M bytes: Register data

M+1 and M+2 bytes: CRC16 checksum from byte 1 to M

4. Function code 06H: Write a single register value

Host sends:

1	2	3	4	5	6	7	8
ADR	06	Register address high byte	Low byte register address	High byte data	Low byte data	CRC code low byte	CRC code high byte

When the slave receives correctly, it sends back:

1	2	3	4	5	6	7	8
ADR 06	Register	Register	High byte	Low byte	CRC code	CRC code	
ADK	00	high byte	low byte	data	data	low byte	high byte

When the slave receives an error, it sends back:

1	2	3	4	5
ADR	86H	Error message code	CRC code low byte	CRC code high byte

1st byte ADR: Slave address code (=001~254)

Byte 1 86H: Function code for writing register value error 3rd byte information code: see information code table

4th and 5th bytes: CRC16 checksum from bytes 1 to 3

5. Register Definition Table: (Note: Register addresses are encoded in hexadecimal, with the higher bits coming first)

Regist		onl	onl	Regis		onl	onl
er	Contont Description	ontent Description		ter	Content Description	у	у
addres	content bescription	rea	wri	ri addre	rea	wri	
S		d	te	SS		d	te
1000	Measurement distance (mm) (2-byte high-order)	~		1001	Instantaneous temperature value (°C) (where the high bit is the positive and negative indicator bit, and the temperature is 1 below zero, otherwise it is zero; the low bit is the temperature value)		
				100E	Device address (default 01H) (value range 0x00-0FA)		
	Baud rate (default 9600; values: 01-9600,0219200,03-115200)			1011	Reserved		
1012	Liquid types (01 water, 02 diesel, 03 gasoline)			0019	Reserved		
001A	Reserved			001B	Reserved		

(1) Example of reading a single register: reading distance (current sensor address is 0x01) send out: 01 03 10 00 00 01 80 CA return: 01 03 02 06 78 BB C6 The two red bytes indicate that the current measurement value is 1656 (0x0678=1656 in millimeters) (2) Example of reading multiple registers: reading distance and temperature (current sensor address is 0x01) send out: 01 03 10 00 00 02 C0 CB return: 01 03 04 07 78 00 16 FA 90 The two red bytes represent: current distance of 1912mm (0x0778), temperature of 22 $\,$ $^\circ\!$ C (0x0016); (3) Example: Write baud rate send out: 01 06 10 10 00 01 4D 0F Write baud rate 01 (9600) return: 01 06 10 10 00 01 4D 0F **Returning 01 indicates successful writing** (4) Example: Read the currently set liquid type Send: 01 03 10 12 00 01 20 CF (5) Example: Setting the type of liquid to be measured 01 06 10 12 00 01 CE CF 01 Water, 02 Diesel, 03 Gasoline

VII. Installation

There is a set of install shell for this fuel level sensor, it include shell A and shell B, as picture:

1/ First, use fuel level sensor to locate a point on the bottom of the tank and mark it, make sure the signal is good.

2/ Stick the Shell A with strong glue at the marked point on the bottom of tank.

3/ Put the fuel level sensor into the Shell A, pay attention that there is no any bubbles and gap between the sensor and tank surface, the best way is to put some coupling agent on the sensor surface when put the sensor into Shell A.

4/ Screw up Shell B to Shell A, fix the sensor tightly.

MIC METERING (SHENZHEN) LIMITED

Adress: 643-648, Zone A, Block B, Qinghu Science Park, Longhua, Shenzhen, China Tel/WhatsApp: +86 13923792185 Email: robert@micmetering.com