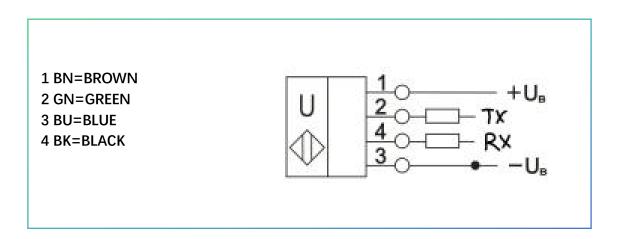


I.Product Features

The UM1000 integrated ultrasonic level gauge is an intelligent non-contact level measuring instrument. The product is small size, low power consumption, gain control, temperature compensation, and adopts advanced detection and calculation technology to improve the measurement accuracy of the instrument. It has a suppression function for interference signals to ensure the authenticity of the measurement results. The product can be widely used for measuring the liquid level of various liquids and the height of solid materials, as well as for measuring distance.

II. Application

Liquid level measurement Container water level monitoring Material level/height


III: Parameters

Technical data	
General Specifications	
Sensing distance	1001000mm
Adjustment range	1001000mm
Unusable area	0100mm
Standard target plate	100mm×100mm
Transducer frequency About	200 kHz

Response delay About	85ms		
Indicators/Operating means			
LED yellow	solid: NO LED flash:		
LED red	flashing:		
Electrical specifications			
Operating voltage $U_{\rm B}$	612VDC ripple10%ss		
No-load supply current	≤15mA		
Output			
Output type	1 output RS485/TTL/0-5V/4-20mA		
Resolution			
Deviation of the characteristic curve	±1% of full-scale value		
Repeat accuracy	±0.1% of full-scale value		
Load impedance	>1k Ohm		
Maximum switching current	mA		
Temperature influence	±1.5% of full-scale value		
Ambient conditions			
Ambient temperature	-2570°C		
Storage temperature	-4085°C		
Mechanical specifications			
Protection grade	IP67		
Connection	PVC cable,4-PIN		
Material			

Housing	PBT OR FRP	
Transducer	Epoxy resin/hollow; Polyurethane foam	
Weight	70g	
Compliance with standards and Directives		
Standard conformity	EN 60947-5-2:2020	

IV. Wire connection

V: Adjusting the evaluation limits

The ultrasonic sensor features an analogue output with two teachable evaluation limits. These are set by applying the supply

voltage $-U_B$ or $+U_B$ to the TEACH-IN input. The supply voltage must be applied to the TEACH-IN input for at least 1 s.

indicate whether the sensor has recognised the target during the TEACH-IN procedure. The lower evaluation limit A1 is taught

with $-U_B$, A2 with $+U_B$.

Two different output functions can be set:

- 1. Analogue value increases with rising distance to object (rising ramp)
- 2. Analogue value falls with rising distance to object (falling ramp)

Evaluation limits may only be specified within the first 5 minutes after

Power on. To modify the evaluation limits later, the user may specify the desired values only after a new Power On.

TEACH-IN rising ramp (A2 > A1)

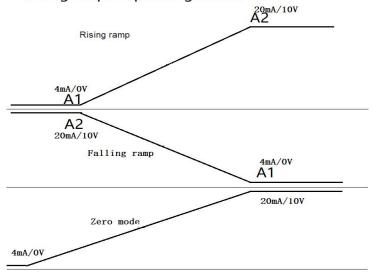
- Position object at lower evaluation limit
- TEACH-IN lower limit A1 with U_{B}
- Position object at upper evaluation limit
- TEACH-IN upper limit A2 with + U_{B}

TEACH-IN falling ramp (A1 > A2):

- Position object at lower evaluation limit
- TEACH-IN lower limit A2 with + U_B
- Position object at upper evaluation limit
- TEACH-IN upper limit A1 with U_B

Default setting

A1: unusable area


A2: nominal sensing range

Mode of operation: rising ramp

LED Displays (SMP80 series no led)

Displays in dependence on operating mode	Red LED	Yellow LED
TEACH-IN evaluation limit		
Object detected	off	flashes
No object detected	flases	off
Object uncertain (TEACH-IN invalid)	on	off
Normal mode (evaluation range)	off	on
Fault	on	previous state

Analog output operating modes

MIC METERING (SHENZHEN) LIMITED

Adress: 643-648, Zone A, Block B, Qinghu Science Park, Longhua, Shenzhen, China

Tel/WhatsApp: +86 13923792185 Email: robert@micmetering.com